TacoSkill LABTacoSkill LAB

The full-lifecycle AI skills platform.

Product

  • SkillHub
  • Playground
  • Skill Create
  • SkillKit

Resources

  • Privacy
  • Terms
  • About

Platforms

  • Claude Code
  • Cursor
  • Codex CLI
  • Gemini CLI
  • OpenCode

© 2026 TacoSkill LAB. All rights reserved.

TacoSkill LAB
TacoSkill LAB
HomeSkillHubCreatePlaygroundSkillKit
  1. Home
  2. /
  3. SkillHub
  4. /
  5. design-of-experiments
Improve

design-of-experiments

1.3

by majiayu000

153Favorites
131Upvotes
0Downvotes

Expert guidance for Design of Experiments (DOE) in Python - interactive goal-driven design selection, classical DOE (factorial, response surface, screening), Bayesian optimization with Gaussian processes, model-driven optimal designs, active learning, and sequential experimentation; includes pyDOE3, pycse, GPyOpt, scikit-optimize, statsmodels

statistics

1.3

Rating

0

Installs

Data & Analytics

Category

Quick Review

No summary available.

LLM Signals

Description coverage-
Task knowledge-
Structure-
Novelty-

GitHub Signals

49
7
1
1
Last commit 0 days ago

Publisher

majiayu000

majiayu000

Skill Author

Related Skills

pandas-prospark-engineerxlsx

Loading SKILL.md…

Try onlineView on GitHub

Publisher

majiayu000 avatar
majiayu000

Skill Author

Related Skills

pandas-pro

Jeffallan

6.4

spark-engineer

Jeffallan

6.4

xlsx

mrgoonie

7.2

faiss

zechenzhangAGI

7.0
Try online